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Albert Einstein (1905)
Assuming a light of pulsation ω and momentum k, the quantum of
particle named « photon* » by Lewis in 1926 holds an energy and
impulsion defined such as:

Is the photon granularity in contradiction with the standard wave
equation which should be continuous (Maxwell)?

How to understand the duality nature of Light? (e.g. Light has both
properties of wave and particle at the same time).

Does the duality still exist for particles of matter (electrons, etc.)?

photon* = Lichtquantum in German

Einstein introduces the concept of light quantization
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Louis de Broglie (1923)
With every particle of matter with mass m and velocity v, a real wave
must be associated, related to the momentum by the equation

In wavelength,

or even

“The fact that, following Einstein's introduction of photons in light
waves, one knew that light contains particles which are concentrations
of energy incorporated into the wave, suggests that all particles, like the
electron, must be transported by a wave into which it is incorporated...”
“My essential idea was to extend to all particles the coexistence of
waves and particles discovered by Einstein in 1905 in the case of light
and photons”
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Double slit experiment with electrons

2

Although electrons are sent one by one, interference fringes could be
observed. These interference fringes are formed only when electron
waves pass through on both sides of the electron biprism at the same
time but nothing other than this

Electrons are accelerated to 50 kV, with a speed of about 120,000 km/s 
e.g. 0.4 ✕ c (~ 10 electrons per second)

Similar to Fresnel’s 
biprism experiment
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Double slit experiment with electrons

At the beginning, bright spots begin
to appear here and there at random
positions. Electrons are detected
one by one as punctual particles

Two electrons identically prepared with
the same initial conditions show
however different impact points

The electron impact point (x,y)
looks somewhat random ??
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Double slit experiment with electrons

Number of electrons accumulated: (a) 8; (b) 270; (c) 2,000; (d) 16,000. 
About 30 minutes is needed to reach stage (d)
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The wavefunction or state function has the important property that is the
probability that the particle lies in a volume element located at r and at
time t
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First postulate: The state of a quantum mechanical system is completely
specified by a wavefunction

The wave function

The wavefunction must satisfy certain mathematical conditions because
of this probabilistic interpretation

that depends on the spatial coordinates 

Normed function

probability amplitude

probabilty density
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It is possible to retrieve
with a good precision if and only if N >> 1

6

Probabilistic interpretation

Assume N particles identically prepared in the same quantum state

For each particle, we measure the position with a detector having a spatial
resolution δx, then we build-up an histogram of the results

ni: number of atoms detected in the ith channel
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Mean value and root mean square

Mean (expectation) value

Variance

Standard deviation
or dispersion

with
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The wave function contains all the information of the system e.g. there is
nothing else in the quantum formalism that would allow to know, before
doing a measurement where the particle will be detected

The probabilism character and randomness behavior does not result
from a lack of knowledge of the initial conditions but is inherently
included in the quantum formalism

No hidden variables, “God does not play dice with the Universe”
(Einstein)
Experiment and theoretical proofs, Bell’s theorem

8

Summary of the 1st postulate
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Superposition principle

The wavefunction is a complex-valued probability amplitude

Interferences

If and are wavefunctions with laws of probability and

then,
is also a possible wave function with the law of probability

Superposition principle is a 
prerequisite for a structure of a 

vector space
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Second postulate

The wave function or state function of a system evolves in time
according to the time-dependent Schrödinger equation

Free particle without interaction

De Broglie’s waves are solutions of
Schrödinger equation
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Spectral theorem:  If the operator   I is Hermitian, there exist an
orthonormal basis of consisting of eigenvectors of  
à Each eigenvalue is element of the set of real numbers
à The operator        is diagonalizable 

An eigenfunction of an operator defined on the wave function
space is any non-zero function in that space that, when acted
upon by is only multiplied by some scaling factor called an

eigenvalue
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Definition

Note the occurrence of some subtleties when moving to a complex 
space with an infinite-dimension! (see later on)
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Eigenfunctions of the Hamiltonian

1
D

Play a crucial role to describe the evolution of many quantum systems

Solutions usually not trivial (à numerical analysis)
Some cases can be solved analytically

Harmonic potential

Coulomb potential

Constant piecewise potentials
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Infinite well potential
Particle in a box

Boundary conditions: The wave function is always continuous!

To simplify we assume
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Infinite well potential

à All wavevectors k can take only discrete values

à And all eigenvalues of the energy are quantized

General form of the solutions

Boundary at 

Boundary at 

We assume the energy E >0  and 
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Infinite well potential
Eigenfunctions of the Hamiltonian can be expressed as follows

Normalization

with and

Orthonormality

The wave function can be represented by the expansion

The set of functions I is an orthonormal base of functions such as

Similar to a Fourier series expansion
Similar to a decomposition in a vector subspace

(Kronecker delta)
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Infinite well potential

à An electron in a quantum well of diameter L = 6 × 10-9 m
E1=10 meV

à A nucleon (proton or neutron) in a nucleus of diameter L = 4 × 10-15 m
E1=10 MeV
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Light emission from a quantum well

Atomic layers

Gallium nitride

17
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A key application: Semiconductor lasers
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Optical communications
Gas/molecule detection

à Medical (breath analyses)
à Environment (air pollution)
à Security  (explosive detection)

Countermeasures
Atmospheric communications

Diode lasers and quantum cascade lasers can produce stimulated light 
from near infrared to THz range!



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM

The result of the measurement of      is predicted with certainty if and 
only if the state           is an eigenstate of observable  

19

Relationship between measured 
results and eigenvalues?

We want to measure a physical quantity of a particle prepared in the
quantum state 

If the measure of      is predicted with certainty

Example: we found that an eigenstate of the Hamiltonian corresponds to 
an energy level of the quantum well (particle in a box)

Proof:

QED
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Relationship between measured 
results and eigenvalues?

We assume the system in the state           in such way that the physical 
quantity      is well defined (no fluctuations among the measured results)

Then, 

Converse?

is an eigenstate of      with the corresponding eigenvalue 

Proof

QED
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Relationship between measured 
results and eigenvalues?

Conclusion: The measurement of is predicted with certainty if and
only if the state of the particle is an eigenstate of
à The result is the associated eigenvalue (must be a real number )
à An eigenstate is basically a state without dispersion

We assume the system in the state           in such way that the physical 
quantity      is well defined (no fluctuations among the measured results)

Converse?

Then, is an eigenstate of      with the corresponding eigenvalue 
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What to expect from a measurement?
The measurement of a physical quantity gives a number (or a set of
numbers) which brings information on the system under study

The result is trustable if and only if the measurement of a physical
quantity done over a short period of time gives the same numbers
(repeatability)
A short period of time means that the state of the system does not
substantially evolve between two consecutive measurements (i.e. same
experimental conditions)

Ex: Distribution of human height

Height

Frequency
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Which state after the measurement?
Time  t1

Time t2Energy levels in a 
quantum well

Measurement 
of energy
Result is ε

What are the 
possible values?

State after the 
measurement?

Another 
measurement on 

the same system at 
t2 and performed 

immediately after t1
must give the same 

result with 
certainty

The measurement performed at t2 is predicted with certainty if and only if:
(a) The energy ε must be an eigenvalue of the energy operator i.e. is an 

element of the set of the eigenvalues En
(b) The system has to be in an eigenstate of the energy operator at t2

Measurement at t1:

Initial state
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Possible results?
In any measurement of the observable associated with operator     , the 
only values that will ever be observed are the eigenvalues of 

If the particle, before the measurement, is in whatever state

If the particle, before the measurement, is in an eigenstate of then
the result is with certainty the eigenvalue

Then the result is randomly an eigenvalue of the set of
What is the corresponding probability law?

We know that

leading to the probability law

with
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(b) The probability that eigenvalue will occur -- it is the absolute value
squared of the coefficient,

25

3rd postulate (strong version)
In any measurement of the observable associated with operator     , the 
only values that will ever be observed are the eigenvalues, which satisfy 
the eigenvalue equation

Before the measurement: with

(a) If the system is in an eigenstate of with eigenvalue then any
measurement of the quantity will yield .

Eigenvalue (non-degenerate) 

Orthonormal eigenfunctions

(c) After measurement of yields some eigenvalue , the wave
function immediately collapses into the corresponding eigenstate .
In the case that is degenerate, becomes the projection of onto
the degenerate subspace associated to the eigenvalue
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What to learn from a measurement?
A single measurement performed on a single particle reveals information
on the state of the quantum system after the measurement

From this single measurement, we cannot retrieve the state
We only know that pα2 is not zero

unkown Classical 
apparatus 

If the result is α2 the state 
immediately after is 

The wave function is modified in an irreversible way by the measurement  
Wave function collapse e.g. quantum decoherence



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM27

What to learn from a measurement?

unkown Classical 
apparatus 

If we prepare N particles in the same quantum state (unknown), it is
possible to determine the probabilities pα. This would require to perform
only a single measurement of on each particle

From it is possible to retrieve at least partially 
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Evolution of an eigenstate
We determine the eigenstates of the Hamiltonian

Initial wave function:

The set of functions I is an orthonormal basis of wave functions

Wave function at time t:

Proof

with

QED
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Eigenstates of the Hamiltonian
Consider the particle in the initial state at t=0

Then, the solutions of the Schrödinger equation at time t is given by

à the probability density is time independent

Also valid for all expected values associated to any physical quantities

The eigenstates of the Hamiltonian are stationary states

Wave packet 
collapse

No time 
dependence!
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Steady-state solutions 

Two interesting cases

behaves as a combination of plane waves at infinity 

goes to 0 when x à ∞ 

when

à bound states

This state is eligible as a wave functionIf
IES1>: 1 node

Sturm-Liouville theorem (real wave functions): As we change to a
higher energy level, the index n grows, and we have more nodes
(points where the sign changes) of the wave function

Case of symmetric potentials: Odd or even eigenfunctions
(nondegenerate) or whatever (degenerate)

Further readings: Arfken and Weber, Mathematical Methods for Physicists, Academic Press, Wiley
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How to explain the chemical bond?

We will show that the tunneling jump of the electron from orbit 1 to orbit
2 lowers the energy. This effect is enhanced when the two nuclei are
located relatively close to each other

Attraction between atoms explains the chemical bond

2 nuclei and 1 electron (Dihydrogen cation i.e. ion H2
+)

electron

Nucleus 1 Nucleus 2

electron

Nucleus 1 Nucleus 2
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Ammonia (NH3)

The fundamental state of the molecule is in a superposition of two
configurations « Left » and « Right », hence quantum oscillations take
place between the two states through tunneling effect

Under the right conditions, ammonia molecules can be flipped. Imagine
you are looking at an open umbrella from the side. A strong wind comes
along and turns the umbrella inside out!

Left configuration Right configuration
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Double well potential 

Consider the energy levels such as E<V0

What is the role of the tunneling effect across the barrier ?

As the Hamiltonian H(x) is invariant i.e. H(-x) = H(x), the eigenstates of
the Hamiltonian can be described through a linear combination of even
(symmetric) and odd (antisymmetric) functions

“Left (G)” “Right (D)”
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Energy levels

symmetric

antisymmetric

symmetric

antisymmetric

2a

Infinite well
Width 2a The tunneling effect raises the 

degeneracy of the two initial states

E1, E2, etc.: energy 
levels of semi-infinite 

well of width a

a

Two states for each 
energy
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Niveaux d’énergie (II)Energy levels

Antisymmetric

Symmetric

Symmetric
Antisymmetric

Two states of 
each energy

Two states 
antisymmetric
& symmetric 

The molecule appears in a superposition of two configurations « Left »
and « Right », with quantum oscillations taking place between the two
states through tunneling effect
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Summary

Not steady-states

if

with

Symmetric

Antisymmetric

Symmetric

Ground state level of 
the semi-infinite well

First excited state level 
of the semi-infinite well

Use Sturm-Liouville’s
theorem p. 140 !

Antisymmetric
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Chemical bond

The cleavage 2A depends on the distance R between the two nuclei

Antisymmetric = antibinding orbital

Symmetric state = binding orbital (stable)

E

electron

Nucleus 1 Nucleus 2

electron

Nucleus 1 Nucleus 2

Electrostatic 
repulsion



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM38

Ammonia inversion

For both eigenstates

Probability densities are symmetric
and time independent (i.e. stationary
states) with values of ½ for each state

Consider the ammonia inversion doublet with the lowest energy level

E1=0
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Ammonia inversion

with eigenvalues

are eigenstates of the H

The Hamiltonian in the basis is diagonal

then

general expression with 
a, b, c, and d real numbers

(Taking E1=0)
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Ammonia inversion
States “Right (D)” and “Left (G)”

Those are not stationary states!

If

then

Consider the quantum superpositions

“Right (D)”

“Left (G)”
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Ammonia inversion

If

If the molecule is initially prepared to be in the “Right” configuration,
over time, the molecule will be oscillating at frequency ω0 between
“Right” and “Left” dispositions

Nitrogen inversion à oscillating dipole à radiation at frequency 

Consider the quantum superpositions

“Right (D)”

“Left (G)”
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Ammonia inversion

Frequency and wavelength

Consider the quantum superpositions

“Right (D)”

“Left (G)”
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If we measure X again immediately afterwards, before the oscillation is
appreciable, we find +x0 with probability 1; the state after the
measurement is

Suppose we start with an energy eigenstate

If we measure X, we can find ± x0 with probabilities 1/2

Suppose the measurement has given the result +x0; the state right after
the measurement is then

43

Interference & measurement
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Now, suppose that, on this new state we measure not X but the 
energy E which we are sure was E = ES when we started. We know that 
that we do not always find ES but the two possibilities ES and EA, each 
with a probability of 1/2
à We see in this case how the measurement has perturbed the system

At the beginning, the state was |ψS ; 

At the end it is a mixture of |ψS and        I    in interference, for which 
<E> = (ES + EA)/2
All of this results from the superposition principle on one hand and the 
filtering of which a measurement consists

àA position measurement implies a minimum energy exchange with 
the system. Here, on the average, the exchange of energy is equal to A

Interference & measurement
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Scanning tunneling microscopy

Nickel surface, (D. Eigler, IBM)

Binning & Rohrer (IBM) 1981-85
Nobel prize winners 1986

The tunneling current changes very quickly with the distance (due to the
exponential term in the transmission coefficient)



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM46

Moving atoms one by one

Nanomanipulation: The STM tip is used to lift and put down the
atomic units

A set of STM images showing formation of a quantum coral from 48 
Fe atoms adsorbed on the surface of Cu(111)
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Moving atoms one by one

Carbon monoxide man (IBM)

Stadium coral: Iron atoms on a 
copper surface (IBM) 
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Ket vector

48

Introduced by . P. A. MDirac in 1926

The ket is a normed vector that is an element of
an abstract complex vector space e.g. the
infinite-dimensional vector space of square
integrable wavefunctions
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A Hilbert space         is a linear vector space whose elements are functions 
or  vectors         with a positive-definite scalar product 
The dimensionality of the Hilbert space is the number of linearly
independent vectors/states needed to span it (may be finite or infinite)

Hilbert space

49

Linearity

Properties 
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The Hilbert space         I       is the set of all square-integrable functions 
f(x) on the interval [a,b], i.e., f(x) such that 

Hilbert space

50

Inner product in 

Note the infinite dimensionality of the Hilbert spaces (evidenced by the
infinite number of energy eigenfunctions, which comprise possible
bases for these spaces)

Free particle Infinite square well 
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Every physical system can be represented by a unique Hilbert’s space 

The state of a given physical system is described by a single vector
state (normed vector) of unit length in the system’s Hilbert space

Generalization of the 1st postulate

The Hilbert’s space satisfies the principle of superposition

Existence of Hilbert’s basis composed of eigenstates
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Inner product

All acceptable vectors for a complete description of the quantum
system must be normalized

then

à linear with the second argument, anti-linear with the first argument 

The inner product is defined using the braket notation



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM53

Bra vector

The bra labeled vector is obtained by forming the row vector and
complex conjugating the entries

Inner product

Braket = complex number
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An operator is described by a matrix acting in the Hilbert’s
space basis

54

Matrix mechanics

Column 
vector

Row 
vector Square

matrix

Operators are Hermitian (or self-adjoints) if and only if



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM55

Matrix mechanics

All eigenvalues of Hermitian operators are real. Therefore, (by postulate),
all operators for physical observables are Hermitian (because measured
quantities are real numbers). Some subtleties persist with Hilbert’s
space with infinite dimensional case

Examples of Hermitian operators

Spectral theorem: a Hermitian matrix is diagonalizable and as a
consequence it is possible to find a Hilbert’s basis composed of
eigenvectors

such as
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The Hamiltonian 

Dipole in an external magnetic field (B)

Dipole in an external electric field (E)

Particle of mass m in a potential

Energy operator: HamiltonianPhysical quantity: energy

As in classical physics, possible values for the energy will depend on 
the physical configuration of the problem

Potential energy 
of Interaction
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Projection operator

is an operator (not closed braket)

is a projector

is a projector on state

Here the operator projects a vector onto 
the nth eigenstate
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Projection operator
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Completeness relationship
If we sum over a complete set of states, like the eigenstates of a
Hermitian operator, we obtain the (useful) resolution of identity
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Completeness relationship

If the eigenvalues indexed by n range over a continuous set of values,
the summation becomes an integration

If we sum over a complete set of states, like the eigenstates of a
Hermitian operator, we obtain the (useful) resolution of identity
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Right after the measurement with result (an), the system is projected
onto the vector subspace
This means that a second measurement performed immediately after will
produce the same result (an)

Generalization of the 3rd postulate 

The probability of measuring eigenvalue (an) is given by

61

In any measurement of the observable associated with operator     , the 
only values that will ever be observed are the eigenvalues, which satisfy 
the eigenvalue equation

The result of a measurement is one of the set of eigenvalues (an) of 

Non degenerate
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After the measurement

Generalization of the 3rd postulate 

The probability of measuring eigenvalue (an) is given by

62

In case of degenerate eigenvalues the dimension of the Hilbert space is 

The result of a measurement is one of the set of eigenvalues (an) of 

Degenerate

with
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Infinite dimensional case

A “good operator”: Hamiltonian of the harmonic oscillator

A “delicate operator”: the momentum

Continuous spectrum

Discrete spectrum

à Set of real numbers

Eigenfunctions

Eigenfunctions (Hermite polynomials)

Not  included in Hilbert space of square-integrable functions 

Included in Hilbert space of square-integrable functions 
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Position and momentum space

As the position and momentum eigenfunctions are not square-integrable
(and hence technically outside the Hilbert space), they are orthonormal
in the Dirac sense. This is generally the case for operators whose
eigenvalues are continuous.

To use these states as basis functions, we write a general state as

Note that because we are dealing with a continuous rather than discrete
range of eigenvalues, we integrate rather than sum over all possible
eingenvalues
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Position and momentum space

Inner product

is the value of the wave function at position x is
simply the projection of the state onto an
eigenstate

Probability of measurement of x 

Probability amplitude for  measurement of p 
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Position and momentum space

Conversion between and

Similarly 

The conversion between position and momentum space is
mathematically a Fourier transform because
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Discrete vs continuous

with discrete eigenvalues 

with continuous eigenvalues 

Dirac delta functionKronecker delta function
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Commutators

Commutators between two operators are defined as 

Two operators commute (or are compatible) if 

To figure out commutation relations, apply the operators on a test 
function and look at the end result (sans test function)

Example: the canonical commutation relation [xˆ, pˆ] = i . x

Note that if two operators commute, it becomes possible that the same
state will be an eigenfunction of both operators. Then the two
corresponding observables can be simultaneously specified for that
state. The eigenvalues of the observables are basically “good quantum
numbers” of the state
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Time evolution
Evolution of the state vector                

Then we get

If eigenstates of the Hamiltonian  are known (not time dependent)

We can write the following decomposition

with
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The EPR argument

In 1935, EPR said the quantum theory is not complete pointing out the
existence of possible hidden variables in the formalism
Einstein discovered that the formalism of quantum mechanics contains
the existence of particular states named entangled states

“If, without in any way disturbing a system, we can predict with
certainty the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity”
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The EPR argument

In 1935, Niels Bohr answered EPR by saying that the quantum theory is
complete i.e. there are no hidden variables

In 1964, John Bells introduced an inequality that has further led to the
experimental evidence that quantum mechanics is indeed complete
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If (a) is in state and (b) then the state of the total quantum
system is

Consider a quantum system (a) represented by an Hilbert space with
basis

Consider a quantum system (b) represented by an Hilbert space with
basis

Tensor product of two Hilbert spaces

Tensor product

Tensor product vector space
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Entangled state

An entangled system is defined to be one whose quantum state cannot
be factored as a product of states of its local constituents; that is to say,
they are not individual particles but are an inseparable whole

Let us consider two vectors then

is a vector of the total Hilbert
space 

However the reverse statement is wrong i.e. there exists non separable
states of the Hilbert Space that can not be expressed as

Such a general state Ψ which cannot be written in the form of a tensor 
product is called an entangled state
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Quiz 12

An entangled system is defined to be one whose quantum state cannot
be factored as a product of states of its local constituents.
A non separable state is entangled

Find below which of the following quantum states are entangled?
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Photon polarization

The polarization of a single photon is described in an Hilbert space of
dimension 2

(α, β) real coefficients: linear polarizations
(α, β) complex coefficients: elliptic and circular polarizations

An individual photon can be described as having right or left
circular polarization, or a superposition of the two. Equivalently, a
photon can be described as having horizontal or vertical linear
polarization, or a superposition of the two

à It is a two-state quantum system called quantum bit or qbit
Applications: quantum cryptography & quantum information



Applied Quantum Mechanics, F. Grillot, EE270INSTITUT MINES-TÉLÉCOM76

Measurement on an entangled state

Consider the following entangled quantum configuration with two
photons linearly polarized

The Hilbert space of dimension 4

Two photons 
faraway from 

each other

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB
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Measurement on an entangled state

P1 transmitted 
Result (eigenvalue): ε1=+1

Eigenstates: I+θ1> 

P2 transmitted 
Result (eigenvalue): ε2=+1

Eigenstates: I+θ2> 

P1 reflected 
Result (eigenvalue): ε1=-1

Eigenstates: I-θ1> 

P2 reflected 
Result (eigenvalue): ε1=-1

Eigenstates: I-θ2> 

Two photons 
faraway from 

each other

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB
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Measurement on an entangled state

What are the single probabilities for separated results?

Two photons 
faraway from 

each other

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB

Randomness results not dependent on the polarizer angles. However
those obtained by Alice and Bob together are strongly correlated
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Bell inequality

How to explain quantum correlations? Following the EPR argument,
John Bell assumed that there exists hidden parameters λ
that must determine the outcome of Alice and Bob measurements

J.S. Bell, Rev. Mod. Phys. 38, 447 (1966) 

Statistic distribution 
(normalized)

Two photons 
faraway from 

each otherTransmitted: +1
Reflected: -1

Transmitted: +1
Reflected: -1

P1 P2

Orientation
θ1

Orientation
θ2

ALICE BOB
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Aspect experiments (1981-82)

A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982) 
A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982) 

C1, C2 are optical switches redirecting photons towards polarizers with
angles (θ1,θ’1) and (θ2,θ’2). Commutation was faster (10 ns) than
propagation of light between polarizers (40 ns) and even faster than
time of flight of photons between the source and each switch (20 ns)
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Aspect experiments (1981-82)

Sexp= 2.697 ± 0.015

Result in a perfect agreement with quantum theory
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Others experiments

à All results are in a perfect agreement with quantum theory
à Closing the door on Einstein and Bohr’s quantum debate!

[1] M. Giustina et al., Phys. Rev. Lett. 115, 250401 (2015) 
[2] L. K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015) 
[3] B. Hensen et al., Nature 526, 682 (2015)
See also, https://physics.aps.org/articles/v8/123

Others ultimate experiments have been done in 2015
Entangled photon pair, L = 58 m in Vienna, Austria Vienne [1] 
Entangled photon pair, L = 185 m in Boulder, USA [2]
Entangled spin pair, L = 1.3 km in Delft, The Netherlands [3] 

Aspect experiments were pioneered and showed (fairly) conclusively
that quantum physics is non-local, and that the universe is much
stranger than it appears, or than Einstein would've liked it to be
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Quantum teleportation

Science, Vol. 356, 6343, pp. 1140-1144, 2017


